Hopf Fibrations-Construction and Quaternion Interpretations (I)

Before I begin discussing the Hopf fibration of the 3-spbhere, one of the simplest yet deeply profound example of a non-trivial fiber bundle, I’d like to recall the definition of a fiber bundle.

Let E,B,F represent the entire space, base space and the fiber respectively where E,B are connected. If f:E \mapsto B is a continuous surjection onto the base space, then the structure (E,B,F,f) is said to be a fiber bundle if for every x\in E, there exists a neighborhood U \subset B of f(x) such that there exists a homeomorphism \psi:f^{-1}(U) \mapsto U \times F such that \psi \circ \pi_{U}=f.

What this basically means is that locally, the fiber bundle looks like the product B \times F but globally, it may have different topological properties.

A trivial fiber bundle is a fiber bundle which in which the total space is E=B \times F. In fact, any fiber bundle over a contractible CW Complex is trivial.

Continue reading “Hopf Fibrations-Construction and Quaternion Interpretations (I)”

Advertisements