Connection between a symmetric linear transformation and the unit sphere

 

There is an interesting correspondence among the quadratic form of a symmetric linear transformation T:V \mapsto Von a real Euclidean space,the extreme values of the sphere and the eigenvectors of T

Let Q(x)=(T(x),x) be the quadratic form associated with a symmetric linar transformation which maps V into itself,then the set of elements u in V satisfying \langle u,u  \rangle=1 is called the unit sphere of V

Continue reading “Connection between a symmetric linear transformation and the unit sphere”

Advertisements